数据分析真的能驱动用户快速增长么?

2019-06-26 11:10

来源:第一设计网   责编:admin

  俗话说,“酒香不怕巷子深”;俗话又说,“酒香也怕巷子深” 。再后来,俗话还说,管他酒香不香巷子深不深,只要找个算盘技巧神乎其神的账房先生,即数据科学家,酒就可以大卖了。这叫做用数据驱动用户快速增长,说行话叫“Growth Hacking”。

数据分析真的能驱动用户快速增长么?

  第一次听说“Growth Hacking”这个词儿,是在去年某次大数据会议上。(具体啥会我忘了,因为现在所有的会议都叫大数据会议。)当我带着满满的负能量,准备上台发表一番不和谐的言论时,突然发现一位Facebook前工程师正在讲如何用数据分析驱动用户产品的“Growth Hacking”。

  其实,那位工程师的演讲算得中肯,并没有宣传数据是万应灵药,好像还特意强调了只有把产品做好才能提高留存率。不过后来,这件事儿传的变了形,互联网界有人开始信仰,数据分析是产品点石成金的法宝。如多年前街头小报上宣传得那样:隔衣点穴,能使乳房增高。作为一个跟数据打交道这么多年的码畜,在这个问题上有话不说,则如鲠在喉。今天我们就来聊聊,数据分析真的能驱动用户产品的快速增长么?

  对于数据意识和方法处于侏罗纪和白垩纪之间的中国市场来说,强调数据的作用,总体上是具有启蒙意义的。看看数据,总比单纯拜财神爷有用,不过话又说回来,数据还真的不是财神爷,不是说你信他就能得永生的。圣人有云,“尽信数则不如无数”,到底数据运营在那些场景下有用,怎么才能让它有用,是本公众号的高素质读者们需要搞清楚的问题。

  数据化运营的三板斧

  关于用数据驱动运营增长,近来有不少相关的书籍与讲座。其实,这里的道道儿也并不神秘,大多数数据运营的场景,方法上都可以总结为下面的三板斧:

  一、建立用户转化漏斗

  所谓用户转化漏斗,就是你的业务是如何一步步将一个用户骗到手的。举下面;的几个例子,你一看就明白了:

  广告:展示—>点击—>转化

  游戏:下载—>激活—>留存—>付费

  把妹:摇一摇—>约会—>牵手—>接吻—>上床

  无论上面哪种业务,都可以分解为一系列的阶段,经过每个阶段,用户都只有一部分留存下来。对漏斗的每一个环节准确地记录数据,以便分析和优化各个环节的通过比率,是数据运营的基础设施。

  二、用多维度数据报表找问题

  数据运营中的常见痛点,是明知道转化漏斗上某个环节的通过率较低,却找不到提高的途径。常用的解决思路,就是把数据打细,分解到各个维度上分别观察,这往往能发现产品或系统上的问题。如果多个维度能够灵活组合观察数据,就成了一个数据魔方(Data Cube)。下面的图虽然与互联网产品运营的漏斗数据没关系,但是原理是一样的。

数据分析真的能驱动用户快速增长么?

  比如说,你发现广告的点击率低,进而查到是Chrome浏览器上的点击率拉低了整体统计,那么就要在Chrome浏览器上深究原因,结果很可能是你的Flash广告素材直接被Chrome给屏蔽了。

  这种用多维数据报表来定位和查找问题的办法相当有效,它实际上是高效的debug,仍然是一种“受”的策略。

  三、用A/B测试指导产品演进

  那么有没有数据驱动的“攻”的策略呢?当然也有,制定多个产品可能的改进方向,将它们放到线上,让实际数据来决定谁上谁下。这种A/B测试的方法,往往是大家理想中躺着就可以优化出好产品的魔法,也是“数定胜人”理论的基础之一。

  说到A/B的系统框架,可并不是个的简单的事儿。如何建立准确性和效率兼备的实验框架,值得单独写一篇长文,我们在这里就不多谈了。

数据分析真的能驱动用户快速增长么?

  上面的这三板斧,对于运营好一款产品非常重要。不过您要是认为掌握了这样的数据思维,就可以靠数据分析做出伟大的产品,那还是洗洗睡吧。

  数据运营解决不了的问题

  用户如何选择和评价一款产品,在不同领域有着截然不同的规律。简单来说,我们可以把产品分为理性产品和感性产品。比方说,3C类电商,就是比较典型的理性产品,而服饰类电商,就是相对的感性产品。计算广告和推荐系统,虽然技术栈有相通之处,但前者是理性产品,后者的感性就强得多。

  对于理性产品来说,由于问题的目标稳定且容易量化,数据是最关键的优化手段之一。拿广告产品来说,广告商使用它的目的,是为了获得更高的利润(当然这一利润可能是长期的,也可能是短期的),而不是为了获得心灵上的愉悦或快感。因此,当两个广告平台的投入产出比相差很大时,客户不会顾及哪个的使用体验更胜一筹,而是毫不犹豫地选择赚钱多的那个。

  可是说到感性产品,就远没有那么简单了。记得微信刚火起来的时候,一大波从各行编外人员改行过来的互联网分析师们纷纷口吐莲花,分析为什么微信是人类社交的终结性产品,为什么还在用QQ的人都是历史车轮的阻碍者。可是去年,大约是同一拨分析师,又在纷纷讨论为什么90后用户群正在有微信向手机QQ转移。那么到底是QQ好还是微信好呢?这么问题在不同时间、不同用户情况下都有不同的答案,而我们也不可能对这类移动IM类的产品,给出一个普适性的量化目标。在感性产品的运营中,既然很难给出确定的优化目标,数据优化能起的作用就是有天花板的。

  那么,数据化的运营在何种情形下会遇到明显的瓶颈呢?大致说来有如下几个方面。

  一、产品创新方向无法通过数据获得

  几年前,有一家很火的游戏公司叫Zynga。据说,Zynga的老板并不鼓励创新,而是奉行“拿来主义”,将别人的游戏创意复制过来,用自己的一套数据运营体系快速超越对手。啥样的数据运营体系呢?说白了就是大量的A/B测试。设计说:草地得是绿的。产品经理说:不行,绿的红的数据说了算!于是,他们真的将流量分成红草地和绿草地两种配置,如果数据反映红草地用户付费高,那就把草地全变成红的,让植物学家们见鬼去吧!靠着这样的体系,Zynga一度在Facebook内长期霸占游戏排行榜的前三名。后来怎么样了呢?答案很清楚——现在还有谁知道Zynga么?

数据分析真的能驱动用户快速增长么?